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Learning from controlled sources

Building and using a model P(y|x) is “easy”
[1; P(yilxi, 0)P(0)
IT; P(yilxi)
argmax » _ U(a, Yn+1)P(Ynt1l%n11)

a
Yn+1

PO1{(xi,yi)})

a*

m

POmabnt) = [ POwstbines, P (G i)}

However in many real-world applications the problem is richer, because the model is used:

e The training data is biased because the current model filters out cases
e The training data represents environment + old model acting
e Because the model acts, the environment changes




Example: biased training data

Online payment application:
y € {fraud, valid payment}
x: observed features at decision time

If P(y = fraud|x) is low: accept, s(x) =1

Filtering: if s(x) = 0 then y unobserved

Can you learn P(y|x) from this data?
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s-recoverability

Idea: model data generating process and selection process s(x) explicitly

VI L

Using d-separation, in all models y L s|x so P(y|x,s(x) =1) = P(y|x)

{(xi, yi)|s(xi) = 1} can be used to learn P(y\x)

Bareinboim, Elias, and Judea Pearl. " Controlling selection bias in causal inference.” PMLR, 2012.



Filtering training data on inputs x

Py=1|x)
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Adding complexity

More difficult: ° a
Heuristic s'(x’) filters as well

Can we learn P(y|x) from this biased data? ° a

Idea: conditioning on x and x’ makes y and s independent.

Plylx) = Y P(y.X|x)

- ZP(y\x,x’)P(X’]X)
= Y Plylx.x.s(x) = 1)P(x|x)

We can learn P(y|x, x’, s(x) = 1) from the filtered data and P(x’|x) if we observe (x, x") always



A realistic situation




Discussion

Learning from controlled sources

e Actual use of ML models leads to a richer problem than supervised learning
e Partial solutions already exist in IR, causality, RL, and related fields.
Today's example: dealing with controllers that filter a data source

e The Mercury Machine Learning Lab will collect and connect existing results
e create what is missing, and
e work towards a general problem statement and a toolbox of practical algorithms




