Learning from controlled sources

Onno Zoeter

Industry Director Mercury Machine Learning Lab Booking.com

Booking.com

UNIVERSITEIT VAN AMSTERDAM

The Mercury Machine Learning Lab

Theme 1: Learning from Controlled Sources

Information	Retrieval	Causality	Reinforcement Learning		
University of Amsterdam:	Prof. Joris Mooij, Prof. Maarten de Rijke Philip Boeken, Philipp Hagar Prof. Frans Oliehoek, Prof. Matthijs Spaan Oussama Azizi, Davide Mambelli				
TU Delft:					
heme 2: Natural Language processing – Multi-task learning					
University of Amsterdam:	Prof. Wilke	er Aziz, Prof.	Ivan Titov		

Pedro Ferreira

Learning from controlled sources

Building and using a model P(y|x) is "easy"

$$P(\theta|\{(x_i, y_i)\}) = \frac{\prod_i P(y_i|x_i, \theta)P(\theta)}{\prod_i P(y_i|x_i)}$$

$$a^* \in \arg \max_a \sum_{y_{n+1}} U(a, y_{n+1})P(y_{n+1}|x_{n+1})$$

$$P(y_{n+1}|x_{n+1}) = \int P(y_{n+1}|x_{n+1}, \theta)P(\theta|\{(x_i, y_i)\}d\theta$$

However in many real-world applications the problem is richer, because the model is used:

- The training data is biased because the current model filters out cases
- The training data represents environment + old model acting
- Because the model acts, the environment changes

• • • •

Example: biased training data

Online payment application: $y \in \{ fraud, valid payment \}$ x: observed features at decision time

If P(y = fraud|x) is low: accept, s(x) = 1

Filtering: if s(x) = 0 then y unobserved

	X	5	Y
1	x_1	1	0
2	<i>x</i> ₂	0	?
3	<i>x</i> 3	1	1
÷	÷	÷	÷
n	x _n	0	?

Question

Can you learn P(y|x) from this data?

If so, do you need correction factors?

Idea: model data generating process and selection process s(x) explicitly

Using d-separation, in all models $y \perp s | x$ so P(y | x, s(x) = 1) = P(y | x) $\{(x_i, y_i) | s(x_i) = 1\}$ can be used to learn P(y | x)

Bareinboim, Elias, and Judea Pearl. "Controlling selection bias in causal inference." PMLR, 2012.

Filtering training data on inputs x

Adding complexity

More difficult:

Heuristic s'(x') filters as well

Question

Can we learn P(y|x) from this biased data?

Idea: conditioning on x and x' makes y and s independent.

$$P(y|x) = \sum_{x'} P(y, x'|x)$$

=
$$\sum_{x'} P(y|x, x') P(x'|x)$$

=
$$\sum_{x'} P(y|x, x', s(x) = 1) P(x'|x)$$

We can learn P(y|x, x', s(x) = 1) from the filtered data and P(x'|x) if we observe (x, x') always

A realistic situation

Learning from controlled sources

- Actual use of ML models leads to a richer problem than supervised learning
- Partial solutions already exist in IR, causality, RL, and related fields. Today's example: dealing with controllers that filter a data source
- The Mercury Machine Learning Lab will collect and connect existing results
- create what is missing, and
- work towards a general problem statement and a toolbox of practical algorithms