
Learning to Rank For Push Notifications
Using Pairwise Expected Regret

Yuguang Yue∗, Yuanpu Xie, Huasen Wu, Haofeng Jia, Shaodan Zhai, Wenzhe Shi, Jonathan J Hunt∗

Twitter Inc,

Email: {yuguangy, yxie, huasenw, hjia, szhai, wshi, jjh}@twitter.com

Summary
Push notifications have different properties than prior ranking problems. We intro-
duced a novel expected regret (ER) ranking loss designed for push notifications,
which weights a pairwise loss to minimize the expected regret in the ranking. We
compared ER against prior approaches in both a simulation and a real-world pro-
duction setting. In both cases, we found significant improvements in performance
over prior methods.
Push notifications present new challenges for information retrieval and ranking.
We hope to encourage further research in this topic.
More details on this work available at https://arxiv.org/abs/2201.07681

Push Notification ranker at Twit-
ter

Push notification differs from classical ranking problems in several key ways:

• The user will observe only one notification from each set of candidates.

• User behavior is highly personalized since there is no explicit context from the user
to indicate their information need.

• User responses are highly non-stationary, a notification that is timely and relevant
now, may be irrelevant if sent later

• The candidates available to be sent to the user change rapidly and are highly per-
sonalized, so the approach must generalize to rank documents never seen before.

Pairwise loss with expected regret
weights
For a given user u, assume we have features x and labels y for all Tweets in a candidate
set (the set of Tweets we choose from for push notification) and we know the true click
through rate (CTR) ỹ = p(y|x, u) for those Tweets.
We weight the loss between each positive and negative pair (xpos, xneg) by the ex-
pected regret of misordering these two Tweets when the positive Tweet should have
been sent. More specifically:

w′
er = ptop(ỹpos)︸ ︷︷ ︸

probability xpos is the optimal Tweet

× (ỹpos − ỹneg)︸ ︷︷ ︸
regret of CTR if xneg Tweet is sent instead

wer = max(w′
er, k)︸ ︷︷ ︸

prevent weights from degenerating

where the probability that a candidate with a CTR of ỹpos is the top ranked candidate
in a candidate set of size n is:

ptop(ỹpos) = (1− F (ỹpos))
n−1

The expected regret loss over a candidate set for user u can be defined as
ℓer(u, θ) =

∑
Xpos

∑
Xneg

wer(xpos, xneg)

×max(0, 1− (fθ(u, xpos)− fθ(u, xneg)))

where Xpos and Xneg are the positive Tweets and negative Tweets in one candidate set.

Removing the assumptions
The assumptions in red are unrealistic to know in real world, and must be estimated
in real applications.
1. We estimate the true CTR of a Tweet by adding binary classification loss

ℓce(u, θ) =−
∑

xpos∈Xpos

log(σ︸︷︷︸
sigmoid function

(fθ(u, xpos))

−
∑

xneg∈Xneg

log(1− σ(fθ(u, xneg))

to our final loss function and using the current model estimate for computing wer.
2. We construct a pseudo candidate set by aggregating Tweet sents to different users
of the same “user type” (a feature designed at Twitter that groups users based on their
behavior). We do this grouping within each minibatch of data.

Pseudo Code
Initialize θ
for training iterations do

Sample pair of examples (upos, xpos), (uneg, xneg)

Estimate CTRs ỹ′pos = fθ(upos, xpos), ỹ
′
neg = fθ(uneg, xneg).

Compute wer and the estimated values ỹ′pos, ỹ′neg.
Compute ER loss ℓer
Sample pointwise sample ui, xi, yi.
Compute pointwise loss ℓ2.
Update θ to minimize loss

ℓ = ℓer + αℓ2 (1)

end for

Empirical results
We first run the ER model on a simulated dataset. We used the recsim framework
to construct the simulation and we fit key parameters of the simulation to production
data in order to make the simulation more realistic.
The simulated data is generated by first sampling the ‘user type‘ from a Categorical
distribution that fits the production distribution. Conditioned on the user type, a can-
didate set consisting of 60 documents is sampled at each interaction. Each document
has an underlying probability of being opened ỹ = p(y = 1|x, u), which is drawn
independently and identically from a Beta distribution fit (using maximum likelihood
estimation) to the candidate distribution of the production system. Each document
has a corresponding set of features x, which in our case is a 5 degree projection of
p(y = 1|x, u) with independent Gaussian noise added to each dimension.
A model is used to score the documents and select which one is sent to the user, and
a label is generated by sampling from the Bernoulli distribution defined by the latent
CTR ỹ associated with the document. For evaluation, we used the latent probability
of open to compute the regret without any noise due to the label sampling.

Model unbiased gain
Pointwise 0.07624 ± 0.00006 0.0%
Pairwise 0.07623 ± 0.00006 0.01%
K-OS-AUC 0.07679 ± 0.00016 -0.72%
Expect Regret 0.07602 ± 0.00003 0.28%
Model biased gain
Pointwise 0.07417 ± 0.00005 0.0%
Pairwise 0.07412 ± 0.00004 0.07%
K-OS-AUC 0.08139 ± 0.00119 -9.73%
Expect Regret 0.07429 ± 0.00008 -0.16%

note: biased data represents data sampled from a pointwise ranker; unbiased data
represents data sampled from a random ranker.
We launched an online experiment on Twitter’s experimentation platform, where we
compare our expected regret model with pointwise loss model and pairwise loss model
and report key metrics here.

Model Open Interact
Pointwise 0.0% 0.0%
Pairwise 0.04% 0.46%
Expected regret 0.33% 2.46%

