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¢ Machine translation methods on their own only
make suggestions for few well-formed queries

¢ User-generated log data: poor readability/
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* Long-term memorization,

fine-grained profiling [Cheng 21]
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* Learn structural feature representation with GNN [Fan 19]
> Uniform embeddings with same term space
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¢ Buyers unfamiliar with category/attributes
** Understand users’ purchase intent
> E.g., (shoes,sandals) > (clothing, footwear)

¢ Expensive hand-engineered feature sets
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