
ranx: A Blazing-Fast Python Library for Ranking Evaluation and Comparison
Elias Bassani1,2

1Consorzio per il Trasferimento Tecnologico - C2T 2University of Milano-Bicocca, Milan, Italy

What is ranx?

ranx is a Python evalua on library for Informa on Retrieval.

ranx embraces a Plug & Play philosophy, providing a user-friendly interface

to the most common ranking evalua on metrics.

ranx is built on top of Numba [3], a just-in- me [1] compiler for Python code,

that allows high-speed vector opera ons and automa c paralleliza on.

Main Features

Convenient way of managing qrels, runs, and evalua on results.

Qrels and runs can be imported (exported) from (to) Python dic onaries,

JSON files, TREC-Style files, and Pandas DataFrames.

Automa c sor ng and data checking, so you can focus on what ma er.

Compute mul ple metrics with a single line of code.

Compare different runs and perform sta s cal tes ng with one func on call.

Visualize well-forma ed comparison tables directly in your terminal or in a

Jupyter Notebook.

Export LATEX tables ready for your scien fic publica ons.

The efficiency brought by Numba [3] makes the adop on of ranx convenient

even for industrial applica ons.

Available Metrics

Hits

Hit Rate

Precision

Recall

F1

r-Precision

Mean Reciprocal Rank (MRR)

Mean Average Precision (MAP)

Normalized Discounted Cumula ve

Gain (NDCG)

Each metric supports user-defined cutoffs (metric “at k”).

All the available metrics were tested against trec_eval [4] for correctness.

Export LATEX Tables

The LATEX code of the following results table and its cap on were generated with

ranx by simply calling report.to_latex().

Table 1. Overall effec veness of the models. Best results are highlighted in boldface.

Superscripts denote sta s cally significant differences in Fisher’s Randomiza on Test with

p ≤ 0.01.

Model MAP@100 MRR@100 NDCG@10

a model_1 0.3202b 0.3207b 0.3684bc

b model_2 0.2332 0.2339 0.239

c model_3 0.3082b 0.3089b 0.3295b

d model_4 0.3664abc 0.3668abc 0.4078abc

e model_5 0.4053abcd 0.4061abcd 0.4512abcd

Quick Overview Efficiency

Here is reported an efficiency comparison between ranx (using different num-

ber of threads) and pytrec_eval (pytrec) [2], a Python interface to trec_eval
[4]. The comparison was conducted with synthe c data. Queries have 1-to-10

relevant documents. Retrieved lists contain 100 documents. NDCG, MAP, and

MRR were computed on the en re lists. Results are reported in milliseconds.

Speed-ups were computed w.r.t. pytrec_eval.

metric queries pytrec ranx t=1 ranx t=2 ranx t=4 ranx t=8

NDCG

1000 28 4 7.0× 3 9.3× 2 14.0× 2 14.0×
10000 291 35 8.3× 24 12.1× 18 16.2× 15 19.4×

100000 2991 347 8.6× 230 13.0× 178 16.8× 152 19.7×

MAP

1000 27 2 13.5× 2 13.5× 1 27.0× 1 27.0×
10000 286 21 13.6× 13 22.0× 9 31.8× 7 40.9×

100000 2950 210 14.0× 126 23.4× 84 35.1× 69 42.8×

MRR

1000 28 1 28.0× 1 28.0× 1 28.0× 1 28.0×
10000 283 7 40.4× 6 47.2× 4 70.8× 4 70.8×

100000 2935 74 39.7× 57 51.5× 44 66.7× 38 77.2×

Online Resources

Lean more about ranx at https://amenra.github.io/ranx/ (or scan the

QR Code below).

Would you like to see other features implemented? Feel free to open a

feature request on our repository: https://github.com/AmenRa/ranx.

ranx
References

[1] John Aycock. A brief history of just-in- me. ACM Comput. Surv., 35(2):97–113, 2003.

[2] Christophe Van Gysel and Maarten de Rijke. Pytrec_eval: An extremely fast python interface to trec_eval. In

SIGIR, pages 873–876. ACM, 2018.

[3] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: a llvm-based python JIT compiler. In LLVM@SC,

pages 7:1–7:6. ACM, 2015.

[4] E Voorhees and D Harman. Experiment and evalua on in informa on retrieval, 2005.

elias.bssn@gmail.com ECIR 2022 - 44th European Conference on Information Retrieval

https://amenra.github.io/ranx/
https://github.com/AmenRa/ranx
mailto:elias.bssn@gmail.com

