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Takeaways
Neural retrievers hold the promise to replace 
BM25 in modern search engines, but term 
matching still remains a critical component 

We propose a black-box approach to measure a 
model ability to perform lexical matching, and 
answer the following questions: 

(RQ1) To which extent neural retrievers capture 
lexical match (i.e. matching query terms) when 
it’s actually useful (→ relevance)? 

Do they generalize term matching to
● (RQ2) Terms not seen at training time?
● (RQ3) New collections?

Overall we show that neural IR models fail to 
properly generalize term importance on out-of-
domain collections or terms (almost) unseen at 
training time 

Method
High-level idea: “count” query terms in 
retrieved documents
Analysis rationale: the more a term is 
important for a query (w.r.t. relevant 
documents), the more a document containing it 
should be retrieved 

Looking at frequency is not enough (e.g. 
stopwords): how to take into account collection 
statistics + relevance?

1. USER relevance (RSJ weight [1]) 

2. System relevance (derived from RSJ)
Hypothesis: top-K = documents considered to be 
relevant by the system

Contrast both values: look at ΔRSJ=ΔRSJU-ΔRSJS
● Δ > 0: overestimates term importance
● Δ < 0: underestimates term importance
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In-domain / OOT terms
Evaluation on TREC 2019+2020 (97 queries)
Compare several dense and sparse neural models

 
● “Order” between models (linked to lexical bias)
● For high RSJ, neural retrievers underestimate 
importance

● For unseen terms, it is worse  

RSJ vs RSJΔ U (x-axis binned)

Terms appearing in less than 10 
training queries (OOT: Out-Of-Training)

Out-of-domain
Evaluation on two out-of-domain datasets from the 
BEIR benchmark [2]: TREC-COVID and FiQA-2018 (50 
and 648 queries respectively)

● Overall, dense models underestimate while 
“sparse” ones tend to overestimate 

● For terms with shifted statistics (IDF+), 
importance is underestimated 

● Higher variance in Δ 

  

IDF-: terms for which statistics 
are more or less unchanged

IDF+: terms which appear five 
times more in the new collection

Terms seen at training 
time (IT: In-Training)
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