Comparing Intrinsic and Extrinsic Evaluation of Sensitivity Classification

Mahmoud F. Sayed, Nishanth Mallekav, and Douglas W. Oard University of Maryland, College Park

Introduction

- Goal: Make more content available for search
- Some is intermixed with sensitive content
 - o Personal information, private conversations, etc.

- Manual segregation of sensitive content from that which can be shared in impractical
- Objective is to study the relation of sensitivity classification effectiveness on a search engine that seeks to protect sensitive content

Test Collections

- Avocado email research collection.
 - o ~800,000 email messages
 - 65 topics judged for relevance & sensitivity
 - Sensitivity based on one of two personas:
 - John Snibert: Corporate engineer
 - Holly Palmer: University professor
 - Each topic has ~100 judged docs
- OHSUMED test collection
 - ~250,000 MEDLINE abstracts
 - 106 topics judged for relevance & sensitivty
 - Two simulated "sensitive" categories:
 - C12, C13 (Urogenital Diseases)
 - Topics have ~152 judged docs on average

Classification Effectiveness

- We build three sensitivity classifiers based on document text
- a. Logistic Regression (LR)
- b. DistilBERT
- c. OR combination of LR and DistilBERT

	OHSUMED								
Classifier	Precision ↑	Recall [†]	$F_1 \uparrow$	$F_2 \uparrow$	Accuracy ↑				
(a) LR	76.72	73.29	74.96	73.95	94.01				
(b) DistilBERT	82.75	80.08	81.39	80.60	$95.52^{a,c}$				
(c) Combined	74.61	83.81	78.94	81.8	94.53^{a}				
	Avocado: Holly Palmer								
Classifier	Precision ↑	Recall [†]	$F_1 \uparrow$	$F_2 \uparrow$	Accuracy ↑				
(a) LR	72.29	69.98	71.12	70.43	$90.34^{b,c}$				
(b) DistilBERT	66.20	67.85	67.02	67.52	88.65				
(c) Combined	64.15	80.11	71.25	76.31	89.02				
	Avocado: John Snibert								
Classifier	Precision ↑	Recall [†]	$F_1 \uparrow$	$F_2 \uparrow$	Accuracy ↑				
(a) LR	80.53	84.85	82.63	83.95	$83.06^{b,c}$				
(b) DistilBERT	72.87	87.00	79.31	83.75	78.44				
(c) Combined	70.86	93.73	80.71	88.05	78.72				

Search Among Sensitive Content

We used normalized Cost Sensitive
 Discounted Cumulative Gain (nCS-DCG),
 which rewards finding relevant documents but penalizes revealing sensitive documents.

$$extit{CS-DCG}_k = \sum_1^k (rac{g_i}{d_i} + c_i)$$

$$nCS\text{-}DCG = \frac{CS\text{-}DCG - CS\text{-}DCG_{worst}}{CS\text{-}DCG_{best} - CS\text{-}DCG_{worst}}$$

- We built our ranking models using the Coordinate Ascent ranking algorithm.
- We used two approaches for combining a ranking model and a sensitivity classifier.
- a. A post-filter approach that uses the sensitivity classifier on the ranking model's output to filter out any result that is predicted to be sensitive. The ranking model optimizes toward nDCG@10.
- b. A joint approach which works by directly optimizing the ranking model toward nCS-DCG@10, which balances between relevance and sensitivity.

Sensitivity-Aware Ranking Effectiveness

- Jointly modeling relevance and sensitivity yields better results than post-filtering
- When training data is limited, F₂ might be a useful intrinsic measure with which to initially compare sensitivity classifiers when optimizing for measures such as nCS-DCG that penalize failures to detect sensitive content.

Collection: Topics			Holly Pali	mer: 35	John Snibert: 35	
Classifier			Post-filter	Joint	Post-filter Joint	
(a) LR	83.11	83.81	79.92	87.38	76.32	80.87
(b) DistilBERT	84.57^{a}	85.95 ^{a,c}	82.41	86.30	75.48	80.74
(c) Combined	84.97 ^a	84.44	84.40 ^a	90.67^{a}	79.65	83.46 ^a
Oracle	89.44	88.70	92.19	89.64	95.40	91.91

Acknowledgments

This project is funded by NSF grant IIS1618695

