

Leveraging Customer Reviews for E-commerce Query Generation Yen-Chieh Lien¹, Rongting Zhang², Maxwell Harper², AMAZON Vanessa Murdock² and Chia-Jung Lee²

University of Massachusetts Amherst¹, Amazon²

Motivation

- Customer reviews contain diverse properties of products
 Example:
 - Action Camera
 - "Underwater photo", "For kayaking recording"
 - Tent
 - "Strong zipper", "Compact"

Ensemble Approach

- Based on a set of candidate phrase C_p selected by statistical and zero-shot approaches, we further apply an ensemble approach to select the most representative terms to build queries.
- Scoring function

$S_t = freq(t, C_p) \cdot log(\frac{ \{p' \mid p' \in D, t \in C_{p'}\} }{ \{p' \mid p' \in D, t \in C_{p'}\} })$ Which follows TFIDF intuition to find the most distinguishable terms in the candidate set. • Given a desired query length n, we formulate the pseudo queries for a product by selecting all possible $\binom{k}{n}$ combinations from the top-k results in C_p
<u>Experiment</u>
 For generation, we use T5-base as the architecture to generate terms in Stats-s2s and Zero-shot Generation Dataset: 3 product types on Amazon.com Headphones Tents Conditioners

■ Nouns. earbuds, neadset

- Adjectives: "wireless" or "comfortable"
- Participles: "running" or "sleeping"
- "Wireless sleeping headphone" is one of real queries
- For reviews, we focus on these 3 types of terms and phrases as candidates by the filtering with POS tagging.

Statistic-based Approach

• For a term t, an importance score $I_t^D = \frac{p(t, R_D)}{p(t, R_G)}$

is based on a product-specific review set R_D and a generic review set R_{G}

- p(t, R) is computed by a frequency-based method.
- We consider bigram phrases by selection with threshold.
- To generalize the results, we additionally train a seq2seq generation model on pairs of reviews and phrases picked by the statistic-based approach.

	Dev	Test	Dev	Test	Dev	Test
# of reviews	23,165	23,623	19,208	18,734	17,055	17,689
# of sentences	102,281	103,771	97,553	97,320	68,691	70,829

• Evaluation:

- Intrinsic Similarity Evaluation
 - BLEU and METEOR with real queries
- Extrinsic Retrieval Evaluation
 - Train a retrieval model on generated queries with weak supervision signals.
 - Fine-tune TinyBERT to retrieve product description.

Results

Similarity

	Headphone		Te	ent	Conditioner		
	BLEU	METEOR	BLEU	METEOR	BLEU	METEOR	
YAKE	0.1014	0.1371	0.2794	0.2002	0.3143	0.1998	
Doc2Query	0.1589	0.1667	0.3684	0.2145	0.4404	0.264	
Stats-base	0.1743	0.2001	0.3294	0.2201	0.4048	0.2723	
Stats-s2s	0.1838	0.2004	0.321	0.2189	0.3931	0.2641	
Ensemble	0.2106^{*}	0.2024	0.394^{\star}	0.2334^{\star}	0.5047^{\star}	0.2956^{\star}	

Zero-shot Generation

- We aim to adapt text-to-text generation models trained on other domains.
- Although there are previous doc2query models which generate queries from corresponding relevant documents, there is a gap between E-commerce queries and queries in search engines and QA systems.
- To overcome the gap, we reformulate queries in MSMARCO by POS filtering and train a doc2query model on new queries.

	noise cancelling neadphone	lightweight tent	detanging conditioner
Examples	truck driver headphone	alps backpacking tent	shea moisture conditioner
	hearing aids headphone	air mattresses queen tent	dry hair conditioner

Retrieval Performance

	Headphone			Tent			Conditioner		
	MRR	P@1	P@10	MRR	P@1	P@10	MRR	P@1	P@10
BM25	0.28	0.19	0.06	0.43	0.29	0.11	0.56	0.47	0.14
YAKE	0.23	0.11	0.07	0.46	0.34	0.11	0.54	0.43	0.14
Doc2Query	0.28	0.18	0.08	0.49	0.40	0.12	0.58	0.49	0.15
Stats-base	0.28	0.16	0.07	0.44	0.29	0.12	0.54	0.42	0.15
Stats-s2s	0.27	0.17	0.07	0.44	0.32	0.12	0.56	0.46	0.16
Ensemble	0.29	0.20	0.07	0.46	0.33	0.13	0.59	0.48	0.15