Improving BERT-based Query-by-Document Retrieval
with Multi-Task Optimization
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Method

e Cross-Encoder BERT Ranker:

Introduction Results

* Query-by-document (QBD) retrieval is an Information Retrieval
task in which a seed document acts as the query and the goal is
to retrieve related documents.

The ranking results with BM25 and optimized BM25 as initial rankers for COLIEE 2021
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* We use an additional document-level representation learning
objective besides the ranking objective when fine-tuning the
BERT re-ranker.

In the fine-tuning step, we jointly optimize both the ranking loss

and representation learning loss: The ranking results on the SciDocs benchmark
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The evaluation results of MTFT-BERT with various A for COLIEE 2021
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