

Evaluating the Use of Synthetic Queries for Pre-Training a Semantic Query Tagger

What is Semantic Query Labeling?

- Semantic Query Labeling is the task of locating the constituent parts of a query (segmentation) and assigning domain-specific semantic labels to each of them (classification)
- It unfolds the relations between the query terms and the documents' structure while leaving unaltered the keyword-based query formulation.
- Example: "alien ridley scott 1979" Segmentation: "alien" "ridley scott" "1979"
- . Classification: "alien" $\rightarrow \#$ title "ridley scott" $\rightarrow \#$ director "1979" $\rightarrow \#$ year

Summary

- We investigate the **pre-training** of a BERT-based **semantic query-tagger** with **synthetic data** generated by leveraging the documents' structure.
- By simulating a **dynamic environment**, we also evaluate the **consistency** of performance improvements brought by pre-training as real-world training data becomes available.
- The results of our experiments suggest both the utility of pre-training with synthetic data and its improvements' consistency over time.

Research Questions

- . Can we improve the performance of a semantic query tagger by pre-training it with synthetic data before fine-tuning it with *real-world* queries?
- 2. Can pre-training with many synthetic queries solve the inconsistency of a model in predicting semantic classes under-represented in the training set?
- 3. Is the performance boost given by pre-training, if any, consistent over time while new real-world training data become available?
- 4. When does fine-tuning with real-world data become effective for achieving performance improvements over a model trained only on synthetic queries?

Dataset

- Structured movie-related document collection from Kaggle.
- Movie-related queries extracted from the AOL query logs and manually tagged using the following semantic labels: Title, Country, Year, Genre, Director, Actor, Production, company, Tag (mainly topics and plot features), *Sort* (e.g., new, best, popular, etc.)
- Three evaluation scenarios of increasing difficulty: Basic, Advanced, Hard.

Table 1. Statistics of the benchmark datasets.

Basic Advanced Hard # train gueries 3938 4292 5131 672 822 601 # dev queries 610 538 796 # test gueries 5077 5574 6749 Total

Figure 1. More about the dataset

Compared Models

- . Synthetic: model trained with 100k synthetic queries.
- **Real:** model trained with queries from the real-world dataset.
- **Pre-trained:** model pre-trained on synthetic data and fine-tuned with the real-world queries.

Elias Bassani^{1,2} and Gabriella Pasi²

¹Consorzio per il Trasferimento Tecnologico - C2T

²University of Milano-Bicocca, Milan, Italy

real-world queries.

• Findings:

Madal	Ba	isic	Adva	inced	Hard		
Model	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	
Synthetic	0.909	0.884	0.903	0.865	0.765	0.756	
Real	0.927	0.903	0.896	0.776	0.816	0.756	
Pre-trained	0.934	0.910	0.925	0.893	0.840	0.828	

Scenario	Model	Actor F1	Country F1	Genre F1	Title F1	Year F1	Director F1	Sort F1	Tag F1	Company F1
Basic	Synthetic	0.898	0.811	0.867	0.917	0.928	N/A	N/A	N/A	N/A
Basic	Real	0.865	0.857	0.897	0.949	0.945	N/A	N/A	N/A	N/A
Basic	Pre-trained	0.905	0.857	0.862	0.945	0.978	N/A	N/A	N/A	N/A
Advanced	Synthetic	0.885	0.833	0.923	0.914	0.983	0.667	0.853	N/A	N/A
Advanced	Real	0.844	0.765	0.880	0.921	0.975	0.111	0.937	N/A	N/A
Advanced	Pre-trained	0.890	0.849	0.895	0.937	1.000	0.750	0.929	N/A	N/A
Hard	Synthetic	0.857	0.773	0.855	0.777	0.971	0.550	0.876	0.522	0.623
Hard	Real	0.831	0.837	0.873	0.854	0.956	0.222	0.883	0.576	0.771
Hard	Pre-trained	0.884	0.809	0.897	0.857	0.985	0.667	0.931	0.600	0.817

- labeled queries are collected over time.
- synthetic data.

• Findings:

- performances. performance loss w.r.t. Real.

Experiment 1

• **Goal:** Evaluate the performance gains we can achieve by pre-training a semantic query tagger with synthetic data generated from a structured corpus and fine-tuning it with

1. *Pre-trained* model consistently outperforms the considered baselines in all the evaluation scenarios. 2. Most noticeable benefits of pre-training / fine-tuning on Hard, the most complex of the considered scenarios. 3. Synthetically generated queries can play a complementary role w.r.t. real-world queries in effectively training a semantic query tagger – by pre-training a semantic query tagger with many synthetic queries, we can expose the model to abundant in-domain and task-related information.

Table 2. Overall effectiveness of the models. Best results are in boldface.

Table 3. F1 scores for each model and semantic class. Best results are in boldface.

Experiment 2

• Setting: Simulation of a dynamic environment — based on real-world data — where new

• **Goal:** Evaluate the consistency over time of the improvements brought by pre-training with

1. Improvements brought by pre-training are consistent over time.

2. As soon as we fine-tune with real-world gueries the model pre-trained on synthetic data, it achieves top 3. While we collect real-world training data for conducting fine-tuning, we can employ Synthetic with no actual

Figure 2. Over time effectiveness of the models in the HARD scenario.