

	3-6 gram	#Count
-> Collaborativa filtaring with language	<m> and <math><m></m></math></m>	387
- Conaborative intering with language	< m >, < m >, < m >	232
models	Movies like <m></m>	196
→ Analyses:	< m >, < m >, < m >, < m >	85
prompt analysis and prompt	Movies similar to $< m >$	25
influence		~
 LM size influence, ratings per 	Mining prompts from the	e Reddit
user influence, comparison with	2015 comments dataset	
matrix factorization		

Dataset and methodology

Movielens 1M Dataset 1 Million user ratings 2716 users with 21 positives and 5 negatives Test user: (no training for language modeling) PROMPTS u=62

"Movies like Matrix, Inception, Interstellar" "Movies like Matrix, Inception, Toy Story" "Movies like Matrix, Inception, Twilight" "Movies like Matrix, Inception, Rocky" "Movies like Matrix, Inception, Die Hard"

 \rightarrow POSITIVE rating>=4 rating<=2.5 \rightarrow NEGATIVE

MAP = average over test users

Comparison with matrix factorization and NSP

Conclusion

- \rightarrow The web contains collaborative filtering data
- → Possible leakage between web text and MovieLens?
- → Language modeling can address cold start : 1 GPT2 = 100 users

- → Many possible extensions finetune GPT2 for recommendation
- hybrid model with matrix factorization

References

[12] What does BERT know about books, movies and music? Probing BERT for Conversational Recommendation, Penha et al., Recsys20

[15] **BPR**: Bayesian Personalized Ranking from Implicit Feedback, Rendle et al., UAI2009

Acknowledgments

This work is part of the CALCULUS project, which is ERC funded the by Grant Advanced H2020-ERC-2017 DG788506 https://calculus-project.eu/