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Contributions

=> Collaborative filtering with language
models

-> Analyses:
€ prompt analysis and prompt
influence
€ LM size influence, ratings per

user influence, comparison with
matrix factorization
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Comparison with content-based filtering and collaborative filtering
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Prompts analysis
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Mining prompts from the Reddit
2015 comments dataset

Dataset and methodology

Movielens 1M Dataset
1 Million user ratings

2716 users with 21 positives and 5 negatives
Test user: (no training for language modeling)

PROMPTS u=62
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“Movies like Matrix, Inception,

“Movies like Matrix, Inception, Toy Story”
“Movies like Matrix, Inception, Twilight”
“Movies like Matrix, Inception, Rocky”
“Movies like Matrix, Inception, Die Hard”

rating>=4  — POSITIVE
rating<=2.5 — NEGATIVE
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MAP = average over test users
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“Movies like Matrix, Inception,
Memento, Interstellar? [eos]”

GPT2

I love movies that give me an existential crisis! Any recommendations for mind-fxck movies?
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Comparison with matrix factorization and NSP
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Conclusion

-> The web contains
collaborative filtering data

-> Possible leakage between
web text and MovielLens?

-> Language modeling can

address cold start :
1 GPT2 =100 users

-> Many possible extensions
& finetune GPT2 for
recommendation
€ hybrid model with matrix
factorization
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