How Different are Pre-trained Transformers for Text Ranking?

Our Work

Large performance gains achieved by the **BERT Cross**-**Encoder** (CE) are not well understood particularly with respect to traditional sparse rankers.

- First, we examine how **CE and BM25 rankings** relate to each other for different levels of relevance (RQ1, RQ1.2 RQ1.3)
- Second, we isolate and quantify the contribution of exact- and soft-term matching to the overall performance (RQ3, RQ4)

Experimental Setup

Model: The vanilla BERT Cross-Encoder (CE) encodes both queries and documents at the same time. Given input $x \in \{[CLS], q_1, \ldots, q_n [SEP], d_1, \ldots, d_m, [SEP]\},\$ where q represents query tokens and d document tokens.

The activations of the CLS token are fed to a binary classifier layer to classify a passage as relevant or non-relevant.

Data: TREC 2020 Deep Learning Track's passage retrieval task on the MS MARCO dataset [1].

Table: Performance of BM25 and crossencoder rankers on the NIST judgements of the TREC Deep Learning Task 2020.

Ranker	NDCG®	10 MAP	MRR	
BM25	49.59	27.47	67.06	
Cross-Encoder	69.33	45.99	80.85	

Compare Rankings

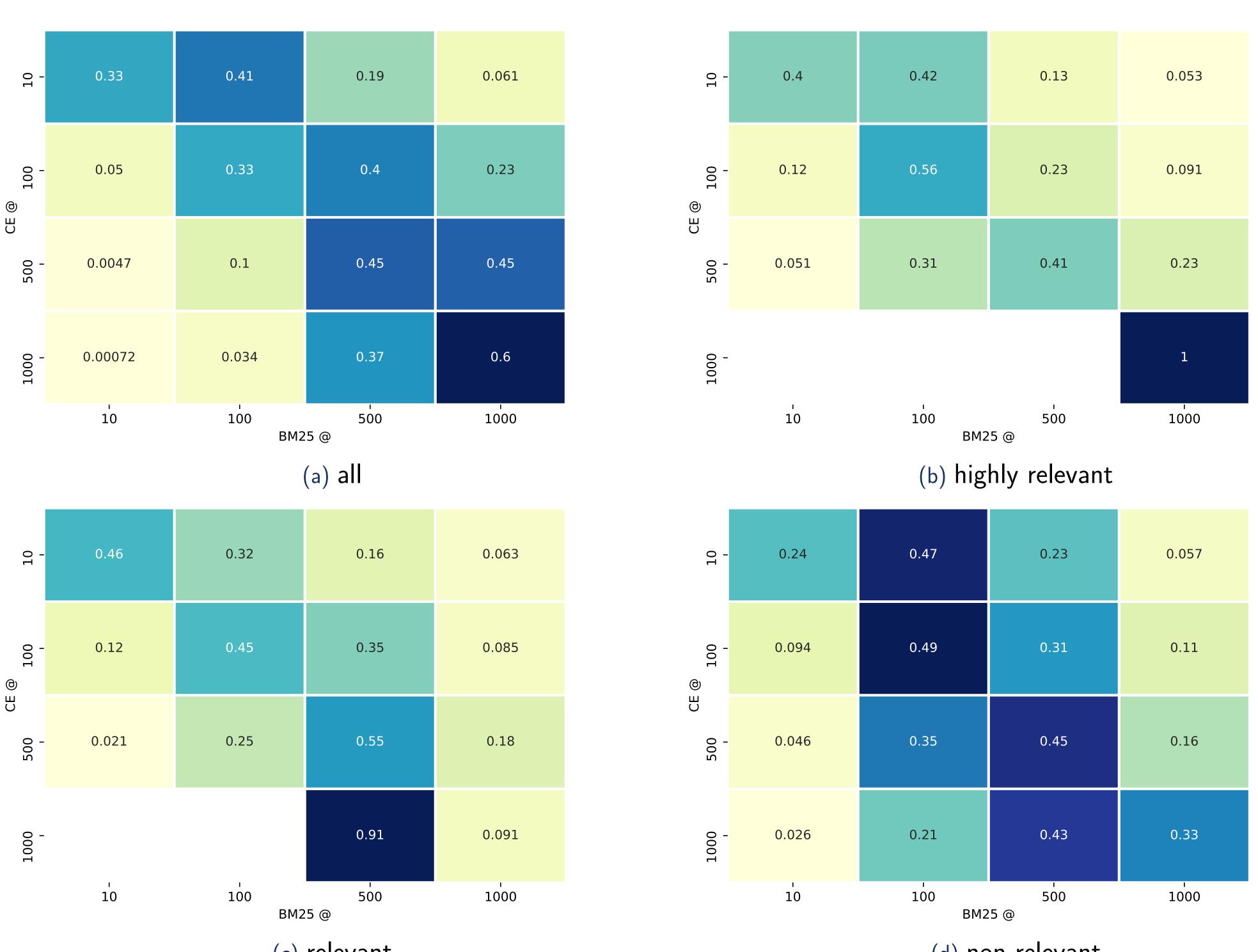
We split the ranking in four different rank-ranges: 1-10, 11-100, 101-500, 501-1000. We observe in which rank-range the documents were positioned with respect to the initial BM25 ranking. This is done for different relevance levels all (a), highly relevant (b), relevant (c) and non-relevant (d). See Fig. 1.

RQ1: How do CE and BM25 rankings vary?

- Top-10 ranks vary substantially
- CE brings up many documents from low ranks
- Items ranked high by BM25 are also ranked high by CE

David Rau

University of Amsterdam

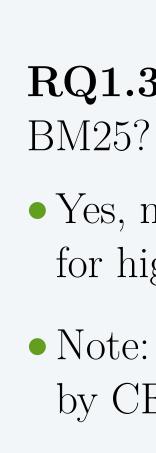


(c) relevant

Figure: 1 Ranking differences between BERT Cross-Encoder (CE) and BM25: Origin of documents in CE ranking at different rank-ranges with respect to the initial BM25 ranking. More intuitively, each row indicates to what ratio documents stem from different rank-ranges. E.g., the top row can be read as the documents in rank 1-10 of the CE re-ranking originate 33% from rank 1-10, 41% from rank 11-100, 19% from rank 101-500 and 6.1% from rank 501-1000 in the initial BM25 ranking. The rank compositions are shown for (a) all, (b) highly relevant, (c) relevant, and (d) non-relevant documents according to the NIST 2020 relevant judgments.

RQ1.2:Does CE better rank the same documents retrieved by BM25?

- Only partially: only 40% agreement of top-10
- CE overestimates the relevance of many non-relevant documents where BM25 scored them correctly lower.



Jaap Kamps

0.24	0.47	0.23	0.057
0.094	0.49	0.31	0.11
0.046	0.35	0.45	0.16
0.026	0.21	0.43	0.33
10	100 BM2	500 5 @	1000

(d) non-relevant

RQ1.3: Does CE better find documents missed by

• Yes, many high ranked stem from low ranks of BM25 for highly-/relevant

• Note: Some highly-/relevant heavily underestimated by CE compared to BM25

To isolate and quantify the effect of "exact" matches we mask all non-query terms in the document and test zeroshot.

RQ2 : Doe
input
Only Q
 impressiv masked) Missed p

all others:

RQ3: Ca

input Drop Q

• Scoring BM25Note: Bl

• In isolation stronger signal than exact matches

[1] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. MS MARCO: A human generated machine reading comprehension dataset. 2016.

Exact Matches

bes CE incorporate "exact matching"?

NDCG@1	0 MAP	MRR
31.70	18.56	44.38

ve performance (almost whole document is

otential: performs worse than BM25

Soft Matches

To study "soft" matches we keep all query tokens and mask

an C	E still find	"impossible	" relevant results"	?
	NDCG@2	LO MAP	MRR	
	49.89	29.08	65.12	
on only "soft matches" performs on par with				
3M25 would score random on this input				

References

Read the full paper

