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OBJECTIVE

To bring together researchers and practitioners working on the generation of simplified summaries of scientific texts
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TASK 1: What is in (or out)? TASK 2: What is unclear?

Select passages to include in a simplified summary, given a Given a passage and a query, rank terms/concepts that are
query required to be explained for understanding this passage
Such algorithms designed to discover patterns in big (deﬁnitions’ ConteXt, apphcati()ns’”)

data might not only pick up any encoded societal
biases in the training data, but even worse, they might

wrimfamnn canbh hinaan wansalbin v i s ces cacrare

3

Source passage

Topic 1: Digital assistants Automated decision making based on big data and

7 machine learning (ML) algorithms can result in Automated decision making based on big data

discriminatory decisions against certain protected [ and machine learning (ML) algorithms can jg Machine learning
o Anfmedem e momme e ol Aots Bl gender, race, result in discriminatory decisions against certain
Pepple are becommg mcreasmgly comfortgble protected groups defined upon personal data
1 using Digital Assistants (DAs) to interact with like gender, race, sexual orientation etc. Such _ 2 Societal biases

services or connected objects. algorithms designed to discover patterns in big

data might not only pick up any encoded
societal biases in the training data, but even
worse, they might reinforce such biases 3 ML

TASK 3: Re'WI'jte thi S ! resulting in more severe discrimination.

Given a query, simplify passages from scientific abstracts
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