

CINCE: Enhanced Sentence Meta-Embeddings for Textual Understanding

Sourav Dutta & Haytham Assem

Abstract

We propose **CINCE**, a novel sentence meta-embedding framework for aggregating, in a principled way, various semantic information captured by different embedding architectures.

Introduction

- the overall contextual and semantic meaning of text.
- aspects and linguistic features.

<u>Assumption:</u> Different embedding techniques capture possibly different linguistic aspects in possibly varying degrees.

- Apply Principal Component Analysis (PCA) on each embe
 - Identify dimensions containing important information
 - Project on dimensions to eliminate non-informative

Empirical Results

- The "canonicalized independent components" together form the metaembedding.
- Using SBERT, LASER and USE embedding, we compare against independ averaging, concatenation and auto-encoding strategies.
- On the SentEval STS task, CINCE achieves the best Pearson's correlation score (4% improvement) with comparable Spearman's score.
- For the supervised classification tasks, CINCE also performs better than the baselines on nearly all the datasets.

Huawei Research, Ireland

sourav.dutta2@huawei.com

Contributions Canonicalized Independent Component based Embeddings Sentence embedding provide dense vector representation capturing (CINCE), a principled and effective novel sentence metaembedding framework. Diverse sentence embedding techniques captures different semantic Amalgamates different aspects of semantic information captured by diverse embedding techniques, by using component analysis. *"Meta-Embedding"* study intelligent combination of sentence Experiments on SentEval benchmark tasks demonstrate the embedding vector space from multiple pre-trained architectures. effectiveness of our framework.

edding space	Conduct Independent Component Analysis (ICA) on each project	Perform Canonical Corr		
tion.	embedding dimension	Provide a comm		
ve aspects.	 Extract unique informative cues from different embedding. 	Group unique in		

Table 1. Mean Pearson's and Spearman's Correlation (ρ) scores achieved by the approaches on the STS tasks of SentEval benchmark. (Best results are marked in **bold**, second-best results are <u>underlined</u>, and * indicates statistically significant results using paired bootstrap resampling).

Benchman Approach	•k / les dim	STS-12	STS-13 (mean Pear	$\frac{\textbf{STS-14}}{cson's \ r \times 100}$	STS-15 / Spearman's	$\begin{array}{c} \textbf{STS-16} \\ \rho \times 100 \end{array}$	STS-B	SBERT USE
SBERT	512	68.84/66.98	68.97/70.00	75.77/73.27	81.30/82.05	78.65/80.02	81.83/81.91	LASEF
USE	512	69.58/68.15	69.16/70.35	76.56/73.51	80.69/81.58	78.81/79.73	81.58/81.52	
LASER	1024	62.90/62.30	48.69/51.61	67.83/67.04	75.03/75.38	71.78/72.32	78.15/78.11	Averag
Average	e 1024	70.99/69.06	68.74/69.43	77.27/74.78	81.97/82.60	79.77/80.78	82.80/ <u>82.66</u>	Concatena
Concatena	tion 2048	<u>71.29</u> / 69.38	68.85/69.76	<u>77.65</u> /75.10	<u>82.56</u> / 83.17	80.08/ 81.10	<u>83.63</u> / 83.77 *	Auto Enc
Auto-Enco	der 1024	67.65/67.22	61.19/63.99	74.18/72.27	80.63/81.56	78.27/79.62	80.88/81.22	
GCCA	1024	68.41/68.09	65.26/66.64	77.32/75.93	79.01/80.00	76.63/80.22	79.52/79.61	GUUA
CINCE	1024	71.56/ <u>69.23</u>	75.35*/75.48*	79.26*/76.50*	82.66 / <u>82.71</u>	80.12 / <u>80.92</u>	83.91 /82.06	CINCE

elation Analysis (GCCA) on independent components non space to project the different source embeddings. formation captured by various encoding components.

Table 2. SentEval classification task accuracy.							
Tasks / Methods	CR	MR	MPQA	TREC	SUBJ	SST-5	
SBERT	82.22	74.25	86.97	91.60	91.67	44.75	
USE	79.66	71.50	86.44	92.40	90.91	42.53	
LASER	82.01	74.50	87.95	92.40	91.94	45.52	
Average	81.11	74.82	88.40	93.40	92.47	44.48	
Concatenation	83.21	76.09	88.60	95.00	92.93	<u>46.79</u>	
Auto-Encoder	80.76	72.96	87.86	91.40	91.59	44.43	
GCCA	78.15	74.68	87.86	94.60	92.65	44.62	
<i>CINCE</i>	83.28	75.62	88.60	95.00	93.04	46.92	